LSE creators

Number of items: 49.
Article
  • Bingham, N. H., Ostaszewski, Adam (2025). The Goldie equation: III. Homomorphisms from functional equations. Aequationes Mathematicae, 99(3), 1085 - 1123. https://doi.org/10.1007/s00010-024-01133-6 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2025). Homomorphisms from functional equations: The Goldie equation, II. Aequationes Mathematicae, 99(1), 1 - 19. https://doi.org/10.1007/s00010-024-01130-9 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2024). Parthasarathy, shift-compactness and infinite combinatorics. Indian Journal of Pure and Applied Mathematics, 55(3), 931 – 948. https://doi.org/10.1007/s13226-024-00638-9 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2024). The Steinhaus-Weil property IV: other interior-point properties. Sarajevo Journal of Mathematics, 18(2), 203-210. https://doi.org/10.5644/SJM.18.02.02 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2022). The Steinhaus-Weil property: II. The Simmons-Mospan Converse. Sarajevo Journal of Mathematics, 17(2), 179 - 186. https://doi.org/10.5644/SJM.16.02.04 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2022). The Steinhaus-Weil property III: Weil topologies. Sarajevo Journal of Mathematics, 18(1), 129-142. https://doi.org/10.5644/SJM.17.02.01 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2020). Sequential regular variation: extensions of Kendall's Theorem. Quarterly Journal of Mathematics, 71(4), 1171 - 1200. https://doi.org/10.1093/qmathj/haaa019 picture_as_pdf
  • Bingham, N. H., Jabłońska, Eliza, Jabłoński, Wojciech, Ostaszewski, Adam (2020). On subadditive functions bounded above on a large set. Results in Mathematics, 75(2). https://doi.org/10.1007/s00025-020-01186-4 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2020). General regular variation, Popa groups and quantifier weakening. Journal of Mathematical Analysis and Applications, 483(2). https://doi.org/10.1016/j.jmaa.2019.123610 picture_as_pdf
  • Bingham, Nick H., Ostaszewski, Adam (2020). The Steinhaus-Weil property: I. Subcontinuity and amenability. Sarajevo Journal of Mathematics, 16(1), 13 - 32. https://doi.org/10.5644/SJM.16.01.02 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2019). Beyond Haar and Cameron-Martin: the Steinhaus support. Topology and its Applications, 260, 23 - 56. https://doi.org/10.1016/j.topol.2019.03.020 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2019). Variants on the Berz sublinearity theorem. Aequationes Mathematicae, 93(2), 351-369. https://doi.org/10.1007/s00010-018-0618-8 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2018). Set theory and the analyst. European Journal of Mathematics, https://doi.org/10.1007/s40879-018-0278-1 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2018). Beyond Lebesgue and Baire IV: density topologies and a converse Steinhaus-Weil theorem. Topology and its Applications, 239, 274-292. https://doi.org/10.1016/j.topol.2017.12.029
  • Bingham, N. H., Ostaszewski, A. J. (2017). Additivity, subadditivity and linearity: automatic continuity and quantifier weakening. Indagationes Mathematicae, 29(2), 687-713. https://doi.org/10.1016/j.indag.2017.11.005
  • Bingham, N. H., Ostaszewski, Adam (2017). Category-measure duality: convexity, mid-point convexity and Berz sublinearity. Aequationes Mathematicae, 91(5), 801-836. https://doi.org/10.1007/s00010-017-0486-7
  • Bingham, N. H., Ostaszewski, Adam (2016). Beurling moving averages and approximate homomorphisms. Indagationes Mathematicae, 27(3), 601-633. https://doi.org/10.1016/j.indag.2015.11.011
  • Bingham, N. H., Ostaszewski, A. J. (2015). Cauchy’s functional equation and extensions: Goldie’s equation and inequality, the Gołąb–Schinzel equation and Beurling’s equation. Aequationes Mathematicae, 89(5), 1293-1310. https://doi.org/10.1007/s00010-015-0350-6
  • Bingham, N. H., Ostaszewski, A. J. (2014). Beurling slow and regular variation. Transactions of the London Mathematical Society, 1(1), 29 - 56. https://doi.org/10.1112/tlms/tlu002
  • Bingham, N. H., Ostaszewski, A. J. (2013). The Steinhaus theorem and regular variation: de Bruijn and after. Indagationes Mathematicae, 24(4), 679-692. https://doi.org/10.1016/j.indag.2013.05.002
  • Bingham, N. H., Ostaszewski, A. J. (2011). Homotopy and the Kestelman-Borwein-Ditor theorem. Canadian Mathematical Bulletin, 54(1), 12-20. https://doi.org/10.4153/CMB-2010-093-4
  • Bingham, N. H., Ostaszewski, Adam (2010). Regular variation without limits. Journal of Mathematical Analysis and Applications, 370(2), 322-338. https://doi.org/10.1016/j.jmaa.2010.04.013
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: I. Slow variation. Topology and its Applications, 157(13), 1999-2013. https://doi.org/10.1016/j.topol.2010.04.001
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: II. The fundamental theorems. Topology and its Applications, 157(13), 2014-2023. https://doi.org/10.1016/j.topol.2010.04.003
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: III. Regular variation. Topology and its Applications, 157(13), 2024-2037. https://doi.org/10.1016/j.topol.2010.04.002
  • Bingham, N. H., Ostaszewski, A. J. (2010). Automatic continuity via analytic thinning. Proceedings of the American Mathematical Society, 138(03), p. 907. https://doi.org/10.1090/S0002-9939-09-09984-5
  • Bingham, N. H., Ostaszewski, A. J. (2010). Beyond Lebesgue and Baire II: bitopology and measure-category duality. Colloquium Mathematicum, 121(2), 225-238. https://doi.org/10.4064/cm121-2-5
  • Bingham, N. H., Ostaszewski, A. J. (2010). Dichotomy and infinite combinatorics: the theorems of Steinhaus and Ostrowski. Mathematical Proceedings of the Cambridge Philosophical Society, 150, 1-22. https://doi.org/10.1017/S0305004110000496
  • Bingham, N. H., Ostaszewski, A. J. (2010). Normed versus topological groups: dichotomy and duality. Dissertationes Mathematicae, 472, 1-138. https://doi.org/10.4064/dm472-0-1
  • Bingham, N. H., Ostaszewski, Adam (2009). Infinite combinatorics and the foundations of regular variation. Journal of Mathematical Analysis and Applications, 360(2), 518-529. https://doi.org/10.1016/j.jmaa.2009.04.061
  • Bingham, N. H., Ostaszewski, A. J. (2009). Automatic continuity: subadditivity, convexity, uniformity. Aequationes Mathematicae, 78(3), 257-270. https://doi.org/10.1007/s00010-009-2982-x
  • Bingham, N. H., Ostaszewski, Adam (2009). Beyond Lebesgue and Baire: generic regular variation. Colloquium Mathematicum, 116(1), 119-138. https://doi.org/10.4064/cm116-1-6
  • Bingham, N. H., Ostaszewski, A. J. (2009). The Index Theorem of topological regular variation and its applications. Journal of Mathematical Analysis and Applications, 358(2), 238-248. https://doi.org/10.1016/j.jmaa.2009.03.071
  • Bingham, N. H., Ostaszewski, A. J. (2009). Infinite combinatorics in function spaces: category methods. Publications de L’institut Mathématique, 86(100), 55-73. https://doi.org/10.2298/PIM0900055B
  • Bingham, N. H., Ostaszewski, Adam (2009). Very slowly varying functions. II. Colloquium Mathematicum, 116(1), 105 - 117. https://doi.org/10.4064/cm116-1-5
  • Bingham, N. H., Ostaszewski, A. J. (2008). Generic subadditive functions. Proceedings of the American Mathematical Society, 136(12), 4257-4266. https://doi.org/10.1090/S0002-9939-08-09504-X
  • Chapter
  • Bingham, N. H., Ostaszewski, Adam (2010). Kingman, category and combinatorics. In Bingham, N. H., Goldie, C. M. (Eds.), Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman (pp. 135-169). Cambridge University Press.
  • Bingham, N. H. (2009). Five questions. In Hajek, Alan, Hendricks, Vincent F. (Eds.), Probability and Statistics: 5 Questions (pp. 1-11). Automatic/ VIP Press.
  • Report
  • Bingham, N. H., Ostaszewski, Adam (2007). Very slowly varying functions - II. (CDAM Research Report Series 2007-03). London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Analytic automaticity: the theorems of Jones and Kominek. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Beyond Lebesgue and Baire: generic regular variation. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Duality and the Kestelman-Borwein-Ditor theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Generic subadditive functions. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Genericity and the Kestelman-Borwein-Ditor Theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Homotopy and the Kestelman-Borwein-Ditor theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). New automatic properties: subadditivity, convexity, uniformity. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). The converse Ostrowski theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2006). Foundations of regular variation. (CDAM research report LSE-CDAM-2006-22). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.