LSE creators

Number of items: 52.
None
  • Brightwell, Graham, Massow, Mareike (2013). Diametral pairs of linear extensions. SIAM Journal on Discrete Mathematics, 27(2), 634-649. https://doi.org/10.1137/080733140
  • Brightwell, Graham, Panagiotou, Konstantinos, Steger, Angelika (2012). Extremal subgraphs of random graphs. Random Structures and Algorithms, 41(2), 147-178. https://doi.org/10.1002/rsa.20413
  • Brightwell, Graham, Luczak, Malwina J. (2012). Order-invariant measures on fixed causal sets. Combinatorics, Probability and Computing, 21(03), 330-357. https://doi.org/10.1017/S0963548311000721
  • Brightwell, Graham, Luczak, Malwina J. (2012). Vertices of high degree in the preferential attachment tree. Electronic Journal of Probability, 17(0), 1-43. https://doi.org/10.1214/EJP.v17-1803
  • Brightwell, Graham, Cohen, Gérard, Fachini, Emanuela, Fairthorne, Marianne, Körner, János, Simonyi, Gábor, Tóth, Ágnes (2011). Permutation capacities and oriented infinite paths. Electronic Notes in Discrete Mathematics, 38, 195-199. https://doi.org/10.1016/j.endm.2011.09.033
  • Bollobás, Bela, Brightwell, Graham, Morris, Robert (2011). Shadows of ordered graphs. Journal of Combinatorial Theory, Series A, 118(3), 729-747. https://doi.org/10.1016/j.jcta.2010.11.018
  • Brightwell, Graham, Luczak, Malwina J. (2011). Order-invariant measures on causal sets. Annals of Applied Probability, 21(4), 1493-1536. https://doi.org/10.1214/10-AAP736
  • Allen, Peter, Brightwell, Graham, Skokan, Jozef (2010). Ramsey-goodness - and otherwise. arXiv.org.
  • Brightwell, Graham, Patel, Viresh (2010). Average relational distance in linear extensions of posets. Discrete Mathematics, 310(5), 1016-1021. https://doi.org/10.1016/j.disc.2009.10.016
  • Brightwell, Graham, Georgiou, Nicholas (2010). Continuum limits for classical sequential growth models. Random Structures and Algorithms, 36(2), 218-250. https://doi.org/10.1002/rsa.20278
  • Brightwell, Graham, Cohen, Gerard, Toth, Agnes, Fairthorne, Marianne, Fachini, Emanuela, Koerner, Janos, Simonyi, Gabor (2010). Permutation capacities of families of oriented infinite paths. SIAM Journal on Discrete Mathematics, 24(2), 441-456. https://doi.org/10.1137/090765407
  • Brightwell, Graham, Panagiotou, Konstantinos, Steger, Angelika (2009). Extremal subgraphs of random graphs: an extended version. arXiv.
  • Brightwell, Graham, Luczak, Malwina (2009). Order-invariant measures on fixed causal sets. arXiv.
  • Bollobas, Bela, Brightwell, Graham, Morris, Robert (2009). Shadows of ordered graphs. arXiv.
  • Brightwell, Graham, Winkler, Peter (2009). Submodular percolation. SIAM Journal on Discrete Mathematics, 23(3), 1149-1178. https://doi.org/10.1137/07069078X
  • Brightwell, Graham (2009). A result in 2d causal set theory: the emergence of spacetime. Journal of Physics: Conference Series, 174(012049), 1-6. https://doi.org/10.1088/1742-6596/174/1/012049
  • Brightwell, Graham, Henson, Joe, Surya, Sumati (2008). A 2D model of causal set quantum gravity: the emergence of the continuum. Classical and Quantum Gravity, 25(10), p. 105025. https://doi.org/10.1088/0264-9381/25/10/105025
  • Brightwell, Graham, Panagiotou, Konstantinos, Steger, Angelika (2007-01-07 - 2007-01-09) On extremal subgraphs of random graphs [Paper]. 18th ACM-SIAM Symposium on Discrete Algorithms, New Orleans LA, United States, USA.
  • Brightwell, Graham, Winkler, P (2007). Submodular percolation. London School of Economics and Political Science.
  • Brightwell, Graham, Alon, Noga, Kierstead, H. A, Kostochka, A. V, Winkler, P (2006). Dominating sets in k-majority tournaments. Journal of Combinatorial Theory, Series B, 96(3), 374-387. https://doi.org/10.1016/j.jctb.2005.09.003
  • Brightwell, Graham, Bollobás, Bela (2006). How many graphs are unions of k-cliques? Journal of Graph Theory, 52(2), 87-107. https://doi.org/10.1002/jgt.20138
  • van den Heuvel, Jan, Brightwell, Graham, Stougie, Leen (2006). A linear bound on the diameter of the transportation polytope. Combinatorica, 26(2), 133-139. https://doi.org/10.1007/s00493-006-0010-5
  • Alon, Noga, Brightwell, Graham, Kierstead, H. A., Kostochka, A. V., Winkler, Peter (2004). Dominating sets in k-majority tournaments. (CDAM research report series LSE-CDAM-2004-11). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Brightwell, Graham, Winkler, Peter (2004). Note on counting Eulerian circuits. (CDAM research report series LSE-CDAM-2004-12). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Brightwell, Graham, Winkler, Peter (2004). Graph homomorphisms and long range action. In Nešetril, Jaroslav, Winkler, Peter (Eds.), Graphs, Morphisms and Statistical Physics (pp. 29-48). American Mathematical Society.
  • Brightwell, Graham R., Tetali, Prasad (2003). The number of linear extensions of the Boolean lattice. Order - a Journal on the Theory of Ordered Sets and Its Applications, 20(4), 333-345.
  • Bekmetjev, Airat, Brightwell, Graham, Czygrinow, Andrzej, Hurlbert, Glenn (2003). Thresholds for families of multisets, with an application to graph pebbling. Discrete Mathematics, 269(1-3), 21-34. https://doi.org/10.1016/S0012-365X(02)00745-8
  • Bollobás, Bela, Brightwell, Graham R. (2003). The number of k-SAT functions. Random Structures and Algorithms, 22(3), 227-247. https://doi.org/10.1002/rsa.10079
  • Brightwell, Graham R., Dowker, Fay, Garciá, Raquel S., Henson, Joe, Sorkin, Rafael D. (2003). "Observables" in causal set cosmology. Physical Review D, 67(8), Art. no. 084031. https://doi.org/10.1103/PhysRevD.67.084031
  • Brightwell, Graham R., Oriolo, G., Shepherd, F. B. (2003). Reserving resilient capacity for a single commodity with upper-bound constraints. Networks, 41(2), 87-96. https://doi.org/10.1002/net.10064
  • Brightwell, Graham, Winkler, Peter (2003). A second threshold for the hard-core model on a Bethe lattice. (CDAM research report series LSE-CDAM-2003-05). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Bollobás, Bela, Brightwell, Graham R., Leader, I. (2003). The number of 2-SAT functions. Israel Journal of Mathematics, 133, 45-60.
  • Brightwell, Graham, Trotter, William T. (2002). A combinatorial approach to correlation inequalities. Discrete Mathematics, 257(2-3), 311-327. https://doi.org/10.1016/S0012-365X(02)00432-6
  • Brightwell, Graham, Winkler, Peter (2002). Hard constraints and the Bethe Lattice: adventures at the interface of combinatorics and statistical physics. In Proceedings of the International Congress of Mathematicians: Beijing 2002, August 20-28 (International Congress of Mathematician (pp. 605-624). Higher Education Press.
  • Brightwell, Graham, Winkler, Peter (2002). Random colorings of a cayley tree. In Bollobás, Bela (Ed.), Contemporary Combinatorics (pp. 247-276). Springer Berlin / Heidelberg.
  • Brightwell, Graham, Katona, Gyula (2001). A new type of coding problem. Studia Scientiarum Mathematicarum Hungarica, 38(1-4), 139-147. https://doi.org/10.1556/SScMath.38.2001.1-4.9
  • Brightwell, Graham, Oriolo, G., Shepherd, F. B. (2001). Reserving Resilient Capacity in a Network. SIAM Journal on Discrete Mathematics, 14(4), 524-539. https://doi.org/10.1137/S0895480100368189
  • Brightwell, Graham, West, Douglas (2000). Partially ordered sets. In Rosen, Kenneth H (Ed.), Handbook of Discrete and Combinatorial Mathematics (pp. 717-752). CRC Press.
  • Bollobás, Bela, Brightwell, Graham (2000). Convex bodies, graphs and partial orders. Proceedings of the London Mathematical Society, 80(2), 415-450. https://doi.org/10.1112/S0024611500012168
  • Brightwell, Graham R., Winkler, Peter (2000). Gibbs measures and dismantlable graphs. Journal of Combinatorial Theory, Series B, 78(1), 141-166. https://doi.org/10.1006/jctb.1999.1935
  • Brightwell, Graham, Winkler, P. (1999). Graph homomorphisms and phase transitions. Journal of Combinatorial Theory, Series B, 77(2), 221-262. https://doi.org/10.1006/jctb.1999.1899
  • Brightwell, Graham, Bollobás, Béla, Sidorenko, Alexander (1999). Geometrical techniques for estimating numbers of linear extensions. European Journal of Combinatorics, 20(5), 329-335. https://doi.org/10.1006/eujc.1999.0299
  • Brightwell, Graham, Grable, D. A., Prömel, H. J. (1999). Forbidden induced partial orders. Discrete Mathematics, 201(1-3), 53-80. https://doi.org/10.1016/S0012-365X(98)00312-4
  • Brightwell, Graham, Haggström, O., Winkler, P. (1999). Nonmonotonic behavior in hard-core and Widom-Rowlinson models. Journal of Statistical Physics, 94(3-4), 415-435. https://doi.org/10.1023/A:1004592103315
  • Brightwell, Graham (1999). Balanced pairs in partial orders. Discrete Mathematics, 201(1-3), 25-52. https://doi.org/10.1016/S0012-365X(98)00311-2
  • Public
  • Barbour, A.D., Brightwell, Graham, Luczak, Malwina J. (2022). Long-term concentration of measure and cut-off. Stochastic Processes and Their Applications, 152, 378 - 423. https://doi.org/10.1016/j.spa.2022.05.004 picture_as_pdf
  • Brightwell, Graham, Fairthorne, Marianne, Luczak, Malwina J. (2018). The supermarket model with bounded queue lengths in equilibrium. Journal of Statistical Physics, 173(3-4), 1149-1194. https://doi.org/10.1007/s10955-018-2044-7
  • Brightwell, Graham, House, Thomas, Luczak, Malwina J. (2018). Extinction times in the subcritical stochastic SIS logistic epidemic. Journal of Mathematical Biology, 77(2), 455-493. https://doi.org/10.1007/s00285-018-1210-5
  • Brightwell, Graham, Janson, Svante, Luczak, Malwina (2017). The greedy independent set in a random graph with given degrees. Random Structures and Algorithms, 51(4), 565 - 586. https://doi.org/10.1002/rsa.20716
  • Brightwell, Graham, Keller, Mitchel T. (2015). The reversal ratio of a poset. Order - a Journal on the Theory of Ordered Sets and Its Applications, 32(1), 43-52. https://doi.org/10.1007/s11083-013-9314-4
  • Allen, Peter, Brightwell, Graham, Skokan, Jozef (2013). Ramsey-goodness - and otherwise. Combinatorica, 33(2), 125-160. https://doi.org/10.1007/s00493-013-2778-4
  • Brightwell, Graham, Winkler, P. (2004). A second threshold for the hard-core model on a Bethe lattice. Random Structures & Algorithms, 24(3), 303-314. https://doi.org/10.1002/rsa.20006