LSE creators

Number of items: 14.
LSE
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2005). On the system of two all_different predicates. (Operational Research working papers LSEOR 05.74). Department of Operational Research, London School of Economics and Political Science.
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2005). On the system of two all_different predicates. Information Processing Letters, 94(3), 99-105. https://doi.org/10.1016/j.ipl.2005.01.009
  • Mourtos, Ioannis (2003). Integer and Constraint programming methods for mutually Orthogonal Latin Squares. [Doctoral thesis]. London School of Economics and Political Science. picture_as_pdf
  • Appa, Gautam, Mourtos, Ioannis, Magos, D. (2002). Integrating constraint and integer programming for the orthogonal Latin squares problem. (Operational Research working papers LSEOR 01.47). Department of Operational Research, London School of Economics and Political Science.
  • Appa, Gautam, Mourtos, Ioannis, Magos, D. (2002). An LP-based proof of the non-existence of a pair of Orthogonal Latin Squares for n = 6. (Operational Research working papers LSEOR 02.51). Department of Operational Research, London School of Economics and Political Science.
  • Management
  • Magos, Dimitris, Mourtos, Ioannis, Appa, Gautam (2012). A polyhedral approach to the alldifferent system. Mathematical Programming, 132(1-2), 209-260. https://doi.org/10.1007/s10107-010-0390-6
  • Appa, Gautam, Magos, D., Mourtos, Ioannis, Pitsulis, L. (2006). Modelling for feasibility - the case of mutually orthogonal Latin squares problem. In Appa, Gautam, Pitsoulis, Leonidas, Williams, H. Paul (Eds.), Handbook on Modelling for Discrete Optimization (pp. 103-128). Springer Berlin / Heidelberg.
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2004). An LP-based proof for the non-existence of a pair of orthogonal Latin squares for n = 6. Operations Research Letters, 32(4), 336-344. https://doi.org/10.1016/j.orl.2003.10.010
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2004). A branch and cut algorithm for a four-index assignment problem. Journal of the Operational Research Society, 55(3), 298-307. https://doi.org/10.1057/palgrave.jors.2601655
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2004). LP relaxations of multiple all_different predicates. Lecture Notes in Computer Science, 3011, 364-369. https://doi.org/10.1007/b96957
  • Mathematics
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2006). A new class of facets for the Latin square polytope. Discrete Applied Mathematics, 154(6), 900-911. https://doi.org/10.1016/j.dam.2005.09.014
  • Appa, Gautam, Magos, D., Mourtos, Ioannis, Janssen, Jeannette (2006). On the Orthogonal Latin Square polytope. Discrete Mathematics, 306(2), 171-187. https://doi.org/10.1016/j.disc.2005.10.020
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2006). On multi-index assignment polytopes. Linear Algebra and Its Applications, 416(2-3), 224-241. https://doi.org/10.1016/j.laa.2005.11.009
  • Appa, Gautam, Magos, D., Mourtos, Ioannis (2006). Searching for mutually orthogonal Latin squares via integer and constraint programming. European Journal of Operational Research, 173(2), 519-530. https://doi.org/10.1016/j.ejor.2005.01.048