Items where department is "Mathematics"

University Structure (106206) LSE (106206) Academic Departments (62869) Mathematics (1461)
Number of items: 18.
Article
  • Alpern, Steven, Reyniers, Diane J. (2001). Games of crowding. International Game Theory Review, 3(1), 27-56.
  • Ambühl, Christoph, Gärtner, Bernd, von Stengel, Bernhard (2001). A new lower bound for the list update problem in the partial cost model. Theoretical Computer Science, 268(1), 3-16. https://doi.org/10.1016/S0304-3975(00)00257-7
  • Biggs, Norman (2001). A matrix method for chromatic polynomials. Journal of Combinatorial Theory, Series B, 82(1), 19-29. https://doi.org/10.1006/jctb.2000.2017
  • Brass, Peter, Rote, Gunter, Swanepoel, Konrad (2001). Triangles of extremal area or perimeter in a finite planar point set. Discrete and Computational Geometry, 26(1), 51-58. https://doi.org/10.1007/s00454-001-0010-6
  • Brightwell, Graham, Katona, Gyula (2001). A new type of coding problem. Studia Scientiarum Mathematicarum Hungarica, 38(1-4), 139-147. https://doi.org/10.1556/SScMath.38.2001.1-4.9
  • Brightwell, Graham, Oriolo, G., Shepherd, F. B. (2001). Reserving Resilient Capacity in a Network. SIAM Journal on Discrete Mathematics, 14(4), 524-539. https://doi.org/10.1137/S0895480100368189
  • Curtain, R. F., Sasane, A. J. (2001). Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems. International Journal of Control, 74(12), 1260-1270. https://doi.org/10.1080/00207170110061059
  • Duckworth, Kate, Zervos, Mihail (2001). A model for investment decisions with switching costs. Annals of Applied Probability, 11(1), 239-260. https://doi.org/10.1214/aoap/998926992
  • Luczak, Malwina J., McDiarmid, Colin (2001). Bisecting sparse random graphs. Random Structures and Algorithms, 18(1), 31-38. https://doi.org/10.1002/1098-2418(200101)18:1<31::AID-RSA3>3.0.CO;2-1
  • Lumley, Richard R., Zervos, Mihail (2001). A model for investments in the natural resource industry with switching costs. Mathematics of Operations Research, 26(4), 637-653. https://doi.org/10.1287/moor.26.4.637.10008
  • Martini, Horst, Swanepoel, Konrad, Weiss, Gunter (2001). The geometry of Minkowski spaces - a survey. Part I. Expositiones Mathematicae, 19(2), 97-142. https://doi.org/10.1016/S0723-0869(01)80025-6
  • Sasane, A. J., Curtain, R. F. (2001). Inertia theorems for operator Lyapunov inequalities. Systems and Control Letters, 43(2), 127-132. https://doi.org/10.1016/S0167-6911(01)00083-4
  • Sasane, Amol, Curtain, Ruth F. (2001). Optimal Hankel norm approximation for the Pritchard-Salamon class of infinite-dimensional systems. Integral Equations and Operator Theory, 39(1), 98-126. https://doi.org/10.1007/BF01192150
  • van den Heuvel, Jan, Pejić, Snežana (2001). Using laplacian eigenvalues and eigenvectors in the analysis of frequency assignment problems. Annals of Operations Research, 107(1-4), 349-368. https://doi.org/10.1023/A:1014927805247
  • van den Heuvel, Jan (2001). Algorithmic aspects of a chip-firing game. Combinatorics, Probability and Computing, 10(6), 505-529. https://doi.org/10.1017/S0963548301004886
  • Book
  • Alpern, Steven, Prasad, Vidhu (2001). Typical dynamics of volume-preserving homeomorphisms. Cambridge University Press.
  • Anthony, Martin (2001). Discrete mathematics of neural networks: selected topics. Society for Industrial and Applied Mathematics.
  • Chapter
  • Batu, Tugkan, Fischer, E., Fortnow, L., Kumar, R., Rubinfeld, R., White, P. (2001). Testing random variables for independence and identity. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (Focs) (pp. 442-451). IEEE. https://doi.org/10.1109/SFCS.2001.959920